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Meredith Tamminga*
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Persistence is the tendency of speakers to repeat the choice of sociolinguistic variant

they have recently made in conversational speech. A longstanding debate is whether

this tendency toward repetitiveness reflects the direct influence of one outcome on the

next instance of the variable, which I call sequential dependence, or the shared influence

of shifting contextual factors on proximal instances of the variable, which I call baseline

deflection. I propose that these distinct types of clustering make different predictions

for sequences of variable observations that are longer than the typical prime-target

pairs of typical corpus persistence studies. In corpus ING data from conversational

speech, I show that there are two effects to be accounted for: an effect of how many

times the /ing/ variant occurs in the 2, 3, or 4-token sequence prior to the target

(regardless of order), and an effect of whether the immediately prior (1-back) token

was /ing/. I then build a series of simulations involving Bernoulli trials at sequences

of different probabilities that incorporate either a sequential dependence mechanism,

a baseline deflection mechanism, or both. I argue that the model incorporating both

baseline deflection and sequential dependence is best able to produce simulated data

that shares the relevant properties of the corpus data, which is an encouraging outcome

because we have independent reasons to expect both baseline deflection and sequential

dependence to exist. I conclude that this exploratory analysis of longer sociolinguistic

sequences reflects a promising direction for future research on the mechanisms involved

in the production of sociolinguistic variation.

Keywords: sociolinguistics, persistence, priming, style-shifting, simulation, corpus

1. INTRODUCTION

Quantitative sociolinguists have long known that in conversational speech, speakers tend to
repeat the choice of the sociolinguistic variant they have recently made. Following Szmrecsanyi
(2006), I call this phenomenon persistence1. Persistence has been observed for a wide range of
variables across multiple languages, including pronominal alternations in Quebec French (Sankoff
and Laberge, 1978), the passive alternation in English (Weiner and Labov, 1983; Estival, 1985),
/s/-deletion and /n/-deletion in Puerto Rican Spanish (Poplack, 1980, 1984), verbal /s/ omission
in some varieties of English (Poplack and Tagliamonte, 1989), /s/-deletion in Brazilian Portuguese
(Scherre and Naro, 1991, 1992; Scherre, 2001), the English dative alternation (Gries, 2005), particle
placement in English (Gries, 2005; Szmrecsanyi, 2006), English coronal stop deletion (Tamminga,
2016), and more. The evidence is abundant that a speaker’s choice of variant for a variable at any
given moment is partly predictable from their most recent variant choice for the same variable.

1It has also sometimes been called perseverance, perseveration, serialism, parallelism, and most colorfully, the “birds of a

feather” effect.
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How to explain this phenomenon, though, is more
controversial. Broadly speaking, there are two classes of
explanation. Tamminga et al. differentiate between sequential
dependence, which is when “the outcome of a sociolinguistic
alternation in one moment directly influences the likelihood of
a matching outcome some moments later” (Tamminga et al.,
2016, p. 33), and baseline deflection, which is when “two closely-
proximal instances of a sociolinguistic variable are more likely
to occur under similar social-contextual circumstances than two
instances that are further apart, and thus are more likely to have
matching outcomes” (Tamminga et al., 2016, p. 34). Both of these
could in principle produce the kind of microtemporal clustering
that has been called persistence. Research on persistence
sometimes assumes sequential dependence and attributes
the dependence to priming, in the psycholinguistic sense of
facilitated access to a recently encountered linguistic form 2. But
it has also been repeatedly observed that stylistic forces might
produce apparently similar repetitiveness. To trace an example
in the literature, Weiner and Labov (1983) find that speakers are
more likely to choose a passive construction instead of an active
one when they have already recently used a passive. Weiner
and Labov attribute this to both a “mechanical tendency to
preserve parallel structure” (suggesting sequential dependence)
and “a stylistic factor operating” (suggesting baseline deflection)
(Weiner and Labov, 1983, p. 56). In a subsequent study building
on Weiner and Labov’s results, Estival concludes that “the effect
we have been studying [is] a syntactic priming effect” (Estival,
1985, p. 21). In other words, she asserts that persistence in the
passive involves sequential dependence in the form of structural
priming. On the other hand, Branigan et al. raise the possibility
of baseline deflection when they point out that Weiner and
Labov’s result “might just reflect shifts in the register used during
the interviews which they studied” (Branigan et al., 1995, p. 492).
Distinguishing between these possibilities is not straightforward.

In this paper I propose that we can make some progress in
disentangling sequential dependence and baseline deflection by
looking at sequences of multiple observations of the variable
prior to a target instance of that variable, instead of just the
immediately prior observation. These sequences reflect a string of
prior instances on which the speaker had to choose between two3

variants of the same sociolinguistic variable as in the target, each
of which may be separated by some distance from the target and
from other prior observations. For a variable with two possible
variants A and B, the usual approach to persistence is to ask
whether the probability of choosing B at target T is different based
on whether the prior token was A or B: does the outcome in
what I will call the A-T and B-T conditions differ?4 If we extend
our view back to the two choices the speaker made before the
target, it will give us four conditions: A-A-T, B-A-T, A-B-T, and
B-B-T 5. I call this a 2-prior sequence, and say that the B-A-T

2Priming itself might arise from a variety of mechanisms, such as spreading

activation or error-driven implicit learning, any of which would fall under the

umbrella of sequential dependence.
3Or more, although I will not consider variables with more than two variants here.
4I explicitly include the T in the sequence name to make the directionality clear.
5Note that in these cases, the hyphens elide an unknown amount of speech between

observations of the variable; in section 4 I will briefly address the question of

sequence has a 1-back variant of A and a 2-back variant of B
(that is, I use “2-prior” to refer to the total depth of the sequence
before the target, and “2-back” to refer to a single observation in
a particular position within the sequence). We can then ask how
the probability of getting B at the target T differs in those four
conditions. For instance, we might hypothesize that the observed
rate of B in the target will be higher in the A-B-T condition than
the B-A-T condition because in A-B-T, the prior instance of B
occupies a slot closer in the sequence to the target.

In section 2.3, I conduct this type of quantitative analysis
on 2-prior, 3-prior, and 4-prior sequences for the variable ING6

in conversational speech. ING is the alternation between the
velar and alveolar nasal after unstressed /I/, as in working vs.
workin’. Previous work has attributed ING persistence to priming
(Abramowicz, 2007; Tamminga, 2014, 2016), but this variable
has also been shown to exhibit style-shifting within data very
comparable to that used here (Labov, 2001), making ING a
suitable test case for this analysis. Both in section 2.3 and in
further statistical analyses of the corpus data in section 2.4, I
will demonstrate that the probability of the /ing/7 variant is
influenced by how many instances of /ing/ occur in the N-
prior sequence, as well as by which variant occurs in the 1-back
position. There is not, however, evidence that the probability of
/ing/ in the target additionally depends on the ordering of the
variants at a depth greater than 1-back.

After showing how N-prior sequences influence ING
outcomes in the corpus data, I turn in section 3 to a series
of simulations to explore what kind of process may have
produced the patterns observed in speech. I create a series of
simulations based on Bernoulli processes—in essence, modeling
sociolinguistic variation as the flipping of weighted coins.
The simulations can be set up to have different sources of
microtemporal clustering built in, or to exclude such sources.
One version of the simulation has sequential dependence built
in, while others involve various simple versions of baseline
deflection. With each simulation, I generate a dataset that can
be analyzed using the same approach as I took with the corpus
data, allowing for an intuitive comparison of the outcomes.While
every simulation with any source of microtemporal clustering
built in produces a difference of some magnitude based on the 1-
prior sequence (that is, the analog to the usual persistence effect),
the predicted probability as a function of the 3-prior sequence
can differ more substantially between models containing baseline
deflection and ones containing sequential dependence.

The possibilities for this type of simulation are enormous, and
pursuing an exhaustive search of what it might produce is beyond
the scope of such preliminary work as this paper. I will, however,

the distance between observations, but I will mostly leave modeling of decay in

multi-token sequences for later work.
6Following one variationist convention, the all-capitalized representation ING

represents the variable itself, the choice between two outcome variants.
7I will use orthographic representations inside slashes for the variants: /ing/ for /IN/

and /in/ for /In/ to achieve consistency with my sequence notation. For N-prior

sequences, I put the entire sequence between a single pair of slashes. In graphs, I

omit the slashes as unnecessary visual clutter. Although unconventional, I believe

this is the most visually distinctive set of options, and therefore is to be preferred

as a way of making the complex discussion slightly easier to follow.
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suggest that each of the two mechanisms of microtemporal
clustering maps more cleanly and consistently to one of the
two central effects in the corpus data: baseline deflection can
produce the effect of how many times /ing/ occurred in the
prior sequence and sequential dependence straightforwardly
gives rise to the effect of the immediately-prior token. The
pattern seen in the corpus ING data, then, can be produced most
effectively by a simulation in which I include both sequential
dependence and baseline deflectionmechanisms. I argue that this
is a welcome result because there are independent reasons to
believe in linguistic behavioral phenomena (as I discuss in the
following subsection) that should give rise to both of these types
of clustering. Finding out that their combination is necessary
to produce observed microtemporal patterns in corpus data
suggests that future work on persistence might move beyond
either/or questions about the source of persistence.

1.1. A Terminological Note
The sociolinguistics and corpus linguistics literatures have
often used the term “priming” for persistence. Objections to
this designation have usually been framed in terms of “style-
shifting” or “register changes.” I will avoid using these terms
throughout this paper even though the discussion would surely
read more intuitively if I contrasted “priming” (sequential
dependence) models with “style-shifting” (baseline deflection)
models. However, I will maintain that the content- and
context-blind quantitative modeling I will explore in this paper
does not and cannot distinguish between different real-world
interpretations of the microtemporal structures I am exploring.
It is tempting to suggest that sequential dependence should
be interpreted as the psychological effect of priming—which
would itself still leave many questions about the priming
mechanism unanswered. However, stylistic and discourse-
structural considerations could also give rise to an effect of
true sequential dependence. For instance, even if a choice of a
particular word order alternant was made purely stochastically,
unrelated to contextual preferences, a speaker might wish to
continue with the same choice on later utterances in order to
maintain the parallelism of the discourse. Similarly, speakers
might tend toward repetitiveness itself as a stylistic choice rather
than making a series of independent choices that happen to all
be occurring under the influence of the same external situation.
The same ambiguity is present when it comes to baseline
deflection. It may seem most natural to understand shifts in a
speaker’s target variant rate as being the result of style-shifting,
but it is also quite possible to think of psychological factors
that could have a similar effect in jointly shaping sequences
of target outputs. For instance, a speaker might be operating
under a greater memory or attentional burden at some stretches
of speech than others, which in turn might influence self-
monitoring behavior. The quantitative approach taken here
does not distinguish these possibilities; it only distinguishes
between the quantitative properties of baseline deflection and
sequential dependence. The evidence for how these distinct
sources of microtemporal clustering should be interpreted will
have to come from other directions. Most importantly, the
evidence on this question of interpretation will need to come

from conversational corpus data analysis that attends to speaker
identity and behavior in particular sociointeractional contexts;
such work might conceivably be supplemented by focused,
socially sensitive experimental investigations.

2. PRIOR SEQUENCES OF THE ING
VARIABLE

In previous work, I have shown that there is a relationship
between a token of ING and the most recent token of ING from
the same speaker (Tamminga, 2014, 2016), specifically that the
speaker is likely to repeat their immediately prior variant choice.
This is consistent with earlier work from Abramowicz (2007),
as well as with the corpus persistence literature more generally.
Here I use the same underlying dataset as in my previous work to
extend my consideration of ING persistence to 2-prior, 3-prior,
and 4-prior sequences.

2.1. Data
The conversational speech data come from the Philadelphia
Neighborhood Corpus (PNC, Labov and Rosenfelder, 2011).
The PNC contains sociolinguistic interviews recorded in
Philadelphia between 1972 and 2012. The recordings have been
orthographically transcribed, then automatically forced-aligned
at the word and phone level using the FAVE-align component of
the FAVE suite (Rosenfelder et al., 2011). The master ING dataset
used here, which comes from a 118-speaker subset of the PNC,
is the same as that described in Tamminga (2014, 2016); more
detail on the speaker demographics can be found there. To create
that dataset, I coded all of the ING observations in the sample
auditorily using a Praat script to facilitate exhaustive searching of
the corpus’ FAVE-aligned TextGrids 8. The data are coded with
0 representing /in/ and 1 representing /ing/, so values closer to
1 indicate a higher probability of the /ing/ variant being chosen.
The data used for analysis in the current paper is a subset of this
master ING dataset; details of how and why this particular subset
was chosen are given in section 2.2 below. The primary predictor
of interest in this study is the makeup of the N-prior sequence.
Each ING token was coded for the values of the four prior
ING observations from the same speaker, modulo the exclusions
described in section 2.2. The multivariate analyses described in
section 2.4 also include the following control predictors:

• Whole word frequency: the Lg10CD measure from SUBTLEX
(Brysbaert and New, 2009)

• Speech rate: the number of vowels per second in a 7-word
window centered on the target word, which is automatically
collected by the Praat script originally used to code the data

• Preceding coronal: in this dataset ING shows progressive
dissimilation

• Following pause: in this dataset /ing/ is more frequent before a
pause

• Speaker gender: male or female, since ING is a classic stable
variable, with women on average using more /ing/ than men.

8Thanks to Joe Fruehwald for sharing his handCoder.Praat script.
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2.2. Revisiting the Envelope of Variation
In quantitative sociolinguistics, deciding what to count and how
to count it is a crucial process, sometimes called defining the
envelope of variation. I give special attention to these decisions
here because, as I point out in Tamminga (2014), the study of
persistence raises new issues for the envelope of variation. Two
of these issues are relevant here: the role of the interlocutor and
the definition of the variable itself.

Regarding the role of the interlocutor, in Tamminga (2014,
2016), I omit prime–target pairs that were interrupted by an
instance of the variable from an interlocutor. The reason for
this decision is that we do not currently know how phenomena
like accommodation and interspeaker priming interact with
intraspeaker persistence, so we should neither assume that an
ING token from an interlocutor is the same as a token from
the target speaker and can be included, nor assume that it
is irrelevant and can be ignored. Here I extend that decision
to the consideration of sequences, making interruption-based
exclusions for the length of the N-prior sequence at hand.
Figure 1 illustrates that if there had been no interruption, the
target at t4 would have had a 3-prior sequence of /ing-ing-in-T/,
while the target at t3 would also have had a 2-prior sequence of
/ing-ing-T/ and could have been included in a 2-prior analysis.
But because there is an interruption between the 2-back and 3-
back positions relative to the target at t4, t4 ends up with no
3-prior sequence, but does still have a valid 2-prior sequence of
/ing-in-T/. With this practice, the number of targets that can be
included is reduced at each greater depth of prior token sequence.

The second issue is that of the definition of the dependent
variable itself. So far I have defined ING as the alternation
between the velar and alveolar nasal after unstressed /I/, but
complications arise because this alternation occurs in a range
of grammatical contexts. Often the ING variable is defined as
including progressive verbs and gerunds formed with the -ing
suffix, such as working, monomorphemes like ceiling, and the
words something and nothing. However, there has long been
uncertainty about whether or not the surface variability in
these contexts is the output of a single variable process. In
Tamminga (2014, 2016), I show that the monomorphemic
(e.g., ceiling) and polymorphemic (e.g., working) context exhibit
within-category, but not across-category, persistence, and argue
that this is evidence that multiple variable processes are at

FIGURE 1 | Coding of a sequence with an interruption; grayed-out content

reflects potential coding that is blocked by the interruption.

play. In this paper, I aim to sidestep rather than illuminate
these questions about the definition of the variable. Therefore,
I exclude all monomorphemic observations and do not treat
them as interruptions because I have already previously shown
that they do not influence persistence in the much more
frequent polymorphemic cases. On the other hand, in Tamminga
(2014) I do find some puzzling evidence for persistence
between the polymorphemic categories and something/nothing, a
category that poses the additional problem of allowing additional
variants. I therefore exclude the something/nothing category but
conservatively treat something and nothing as interruptions.
There is also one other special case, that of the phrase going to. I
exclude instances of gonna from consideration entirely, but treat
instances of going to that could have been produced as gonna
as both exclusions and interruptions. Instances of going to that
could not be realized with gonna (such as “I’m going to the store”)
are included normally.

At each greater depth of N-prior sequence, some additional
data is lost because of interlocutor and exclusion-based
interruptions, and additionally the number of unique N-prior
sequences increases. There is thus a tension between wishing to
look at shorter N-prior sequences because there is more data and
a simpler analysis, but also wishing to look at longer N-prior
sequences because they provide a more refined view of the time-
course of variable production. A 3-prior sequence seems to offer
a good compromise between these goals in the particular data at
hand, but I also look at the 2-prior and 4-prior sequences. The
2-prior sequence provides a simple starting point for reasoning
about sequences of prior observations, and the 4-prior sequence
makes it clear that the data at hand should not be stretched
further. Overall, approximately the same general pattern arises
at the 2-prior, 3-prior, and 4-prior levels, which provides some
reassurance regarding the stability of the results.

2.3. Descriptive Analysis
I begin with an analysis of the subset of the verbal ING data for
which the 2-prior sequence is intact (N = 3,071). For a depth
of two prior observations, there are four unique prior token
sequence options: /in-in-T/, /ing-in-T/, /in-ing-T/, /ing-ing-T/
(recall that T represents the linear position of the target). The first
two sequences have /in/ as their immediately prior observation,
and the last two sequences have /ing/ as their immediately prior
observation, so a traditional persistence analysis would group
together the first two sequences (as /in/-primed) and the last
two sequences (as /ing/-primed). I calculated the /ing/ rate after
each of these unique sequences. The results are in Figure 2.
The unique 2-prior sequences are arranged on the x-axis, and
the y-axis shows the probability of the /ing/ variant after each
sequence. To help guide the visual interpretation at the expense
of added redundancy, the graph is also faceted by how many
/ing/ observations occurred in the 2-prior sequence, and the
bars are color coded by the value of the 1-back variant. From
Figure 2, it is immediately apparent that the /ing/ rate is higher
for observations that had more instances of /ing/ in the 2-prior
sequence: the /ing/ rate after two /in/ variants is 16% (N = 1,420),
while the /ing/ rate after two /ing/ variants is 79% (N = 892).
In the middle facet of the graph, we see an additional effect:

Frontiers in Artificial Intelligence | www.frontiersin.org 4 June 2019 | Volume 2 | Article 10

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Tamminga Microtemporal Clustering in Sociolinguistic Sequences

FIGURE 2 | Corpus probability of /ing/ variant by 2-prior sequence. Error bars

are Clopper-Pearson binomial 95% confidence intervals.

when the 2-prior sequence contains one of each variant, the order
they come in matters: the /ing/ rate is higher after an /in-ing-
T/ sequence (50%, N = 375) than an /ing-in-T/ sequence (36%,
N = 384). That there is a difference between the two blue bars
and between the two red bars in Figure 2 shows that the 2-
prior sequence matters beyond supplying the immediate 1-back
variant. But that there is a difference between the blue and red
bars in the middle facet shows that there is an effect of the 1-back
variant that goes beyond the total number of /ing/ observations
preceding the target.

Next I turn to the subset of the data in which the full 3-prior
sequence is intact (N = 2,334, so 737 observations removed from
the 2-prior subset due to interruptions between the 2-back and
3-back positions). There are eight unique 3-prior sequences to
consider, which I will not enumerate here but which can be found
listed along the x-axis of Figure 3. Figure 3 is set up in the same
way as Figure 2: there is a bar representing the rate of /ing/ use
for targets preceded by each of the unique 3-prior sequences, the
facets represent the total number of /ing/ variants in the 3-prior
sequence, and the color coding represents the 1-back variant. As
before, we see a very strong effect at the far ends of the graph:
the /ing/ rate after a sequence of three /in/ observations is 14%
(N = 898) while the /ing/ rate after a sequence of three /ing/
observations is 83% (N = 540). In the 1/3 /ing/ facet, we see
that the /ing/ rate is higher when the one /ing/ in the sequence
is in the 1-back position (42%, N = 177) but that the order of
the 2-back and 3-back positions does not make a large difference:
the /ing/ rate is 26% after /ing-in-in-T/ (N = 192) and 28% after
/in-ing-in-T/ (N = 142) sequences. In the 2/3 /ing/ facet, we see
essentially the same thing: the /ing/ rate is depressed when the 1-
back token was /in/ (47%, N = 132) but does not appear to differ
between /ing-in-ing-T/ (61%, N = 108) and /in-ing-ing-T/ (60%,
N = 145) sequences.

It should already be apparent from the token counts given in
the discussion of the 3-prior sequence results that data sparsity
will raise its head as a real problem in the 4-prior sequences, both
because there are now 16 unique prior token sequences to subset
by and because the total number of observations is down to 1804
after loss of an additional 530 observations due to interruptions

between the 3-back and 4-back positions. However, even the
smallest subset in this breakdown (/ing-in-ing-in-T/) still has 33
observations in it, so I will cautiously proceed. I will not break
down all 16 /ing/ rates shown in Figure 4 in the discussion here,
but will instead make some general observations. With less data,
the patterns are inevitably somewhat less clear, but there are a
couple reasons to believe that the basic result here is consistent
with the previous two clearer patterns. First, within each facet,
every red bar is taller than every blue bar, and subsequently the
average of the red bars is higher than the average of the blue
bars across the three middle facets. This is consistent with the
observation of an effect of the 1-back variant. Second, within the
same-colored bars in each facet, the fluctuations we see are not
consistent with plausible predictions from the sequence order.
For instance, the /ing/ rate for /ing-in-in-in-T/ is higher than for
/in-ing-in-in-T/ even though the latter has amore recent instance
of /ing/ in the sequence. This suggests that the deeper-than-1-
back order-based fluctuations seen here are random rather than
systematic, and that if we had more data in each subset we
would expect to see them level out to look more like Figure 3. Of
course, the only way to confirm this would be to get more data, a
non-trivial task.

2.4. Statistical Analysis
In the descriptive analyses just given in section 2.3, I took
the following approach at each N-prior sequence depth. First,
I calculated /ing/ rates conditioned on each unique N-prior
sequence separately. Then, I proposed on the basis of those
observed /ing/ rates that treating every unique prior token
sequence as a distinct context was missing a generalization:
that observed ING rates differ only based on how many /ing/
observations occurred in the prior sequence and what variant
is in the 1-back position, not any additional information about
the order of variants in the 2-back, 3-back, or 4-back positions.
However, the descriptive analyses have not yet accounted for
many factors that are known to affect variation in general or
ING specifically, such as phonological context or speaker gender.
They also do not account for the non-independence that results
from different speakers (with different characteristic /ing/ rates)
each contributing more than one token to the dataset (prior to
the sequence formation process and associated exclusions for
interruptions, the average number of observations per speaker is
34). I therefore turn to mixed-effects logistic regression to assess
whether the observations I made based on the raw data reflect
statistically significant differences that are robust to the inclusion
of these other predictors.

The mixed-effects logistic regressions in this section were fit
using the lme4 package version 1.1-18 (Bates et al., 2015) in
R version 3.5.1 (R Core Team, 2015). The dependent variable
is the ING variant in each target observation, with 0 as /in/
and 1 as /ing/. The models include as fixed effects several
known predictors of ING that are available in this dataset
and were described in Section 2.1, namely lexical frequency,
speech rate, preceding segment, following segment, and speaker
gender. The lexical frequency measure (Lg10CD) comes from
SUBTLEX (Brysbaert and New, 2009) already base-10 log-
transformed, and speech rate is natural log transformed. These
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FIGURE 3 | Corpus probability of /ing/ variant by 3-prior sequence. Error bars are Clopper-Pearson binomial 95% confidence intervals.

FIGURE 4 | Corpus probability of /ing/ variant by 4-prior sequence. Error bars are Clopper-Pearson binomial 95% confidence intervals.

continuous control predictors are then z-scored to center
around their mean log value. The categorical control predictors
(preceding/following phonological context and gender) are given
a sum-coded (also known as deviation-coded) contrast scheme,
so that the intercept in the regression is computed at the
grand mean of their levels rather than a reference level. In
addition to these fixed effects, each model also includes a
speaker random intercept; equivalent models were fit with
by-word random intercepts that were dropped because they

captured little variance but made generating predicted values
more complicated. The speaker random intercept is particularly
important, as I discuss in Tamminga (2014), because the
non-independence of observations from the same speaker can
give rise to apparent “repetitiveness” effects without any true
microtemporal clustering involved. Speaker clustering has not yet
been controlled out in the mean rates shown in the figures above,
so it is crucial to fit thesemodels to account for that non-temporal
source of apparent clustering.
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I will focus on modeling the 3-prior subset of the data,
attempting to capture the pattern seen in Figure 3, rather than
modeling the 2-prior or 4-prior sequence analyses. I choose to
focus on the 3-prior subset because the 2-prior sequences do not
offer enough granularity to look at interesting sequence effects,
while the 4-prior sequence analysis has so many prior token
sequence conditions that it leaves us without enough data to get
a confident probability estimate within each condition. I fit three
models to the 3-prior data, which are intended to approximately
map to the two-step approach I just recapped for the descriptive
data analysis, withModel 1 representing the first step andModels
2 and 3 representing the second step and a refinement thereof.
The fixed effects from Model 1 are given in Table 1. Model 1
includes a prior sequence predictor, with a separate level for each
unique 3-prior sequence. The levels of this predictor are reverse
difference coded, so each level is compared to the previous level.
For example, the line in Table 1 labeled “Prior seq. (ing.in.in.T
- in.in.in.T)” represents the test of the difference between the
probability of /ing/ in an /ing-in-in-T/ sequence and an /in-in-
in-T/ sequence. The order of the levels is set to be the same as in
Figure 3, so the coefficients in the model represent the difference
between the height of each bar and the bar to the left of it (in log-
odds). For example, the coefficient for “Prior seq. (ing.in.in.T -
in.in.in.T)” maps to the estimated difference between the second
blue bar from the left in Figure 3 and the first one on the left.

The control predictors are all significant in the expected
directions, which is good because they were selected to reflect
only known influences on ING. When we turn to the critical
predictor of prior sequence in this model, it is important to recall
that the contrasts are set up so that each level is compared to the
level preceding it. The order of the levels is the same as that in
Figure 3: the levels are sorted first by their prior sequence /ing/
count, then by the 1-back position, then the 2-back position,
reflecting a plausible expectation that more prior /ing/s might
increase the /ing/ rate and, when the number of prior /ing/s is the

TABLE 1 | Model 1: Each 3-prior sequence compared to the previous 3-prior

sequence.

Estimate z-value Pr(>|z|)

Intercept −0.38 −2.17 0.030

Control

Speech rate −0.22 −3.41 0.001

Lexical frequency −0.45 −7.38 <0.001

Preceding coronal 0.28 4.60 <0.001

Following pause 0.35 4.73 <0.001

Female speaker 0.49 2.99 0.003

Critical

Prior seq. (ing.in.in.T - in.in.in.T) 0.12 0.56 0.575

Prior seq. (in.ing.in.T - ing.in.in.T) 0.05 0.19 0.847

Prior seq. (in.in.ing.T - in.ing.in.T) 0.78 2.81 0.005

Prior seq. (ing.ing.in.T - in.in.ing.T) −0.27 −1.01 0.314

Prior seq. (ing.in.ing.T - ing.ing.in.T) 0.61 2.01 0.045

Prior seq. (in.ing.ing.T - ing.in.ing.T) −0.16 −0.52 0.602

Prior seq. (ing.ing.ing.T - in.ing.ing.T) 0.59 2.40 0.017

same, those /ing/s might be expected to be more powerful if they
are at a closer sequence position to the target. What we see is that
the first three levels do not differ significantly from one another,
but then /in-in-ing-T/ significantly favors /ing/ compared to
/in-ing-in-T/ (β = 0.78, p = 0.005). The next level, /ing-ing-
in-T/, does not differ significantly from /in-in-ing-T/, but it is
significantly lower than /ing-in-ing-T/ (β = 0.61, p = 0.045).
The /ing-in-ing-T/ level in turn does not differ significantly from
/in-ing-ing-T/. But the final level, /ing-ing-ing-T/, does differ
significantly from /in-ing-ing-T/ in favoring /ing/ (β = 0.59, p =
0.017). This set of hypothesis tests is consistent with my proposal
that there is an influence of the 1-back variant but not deeper
(that is, (> 1)-back) order effects. The difference tests that are
equivalent to the difference between each red bar with a blue
bar next to it within a facet in Figure 3—that is, the jump up
in /ing/ probability from 1-back = /in/ to 1-back = /ing/, when
the prior /ing/ count is the same—show evidence that this 1-
back effect is significant. The cases where the 1-back position and
the prior /ing/ count are the same do not show evidence for a
significant difference. Note that none of these predictors directly
test the hypothesis of differences attributable to the prior /ing/
count alone. If there were no prior /ing/ count effect at all, we
would expect the comparisons between levels where the 1-back
value switches from /ing/ to /in/ but the prior /ing/ count goes
up by 1 (as in the comparison between /ing-ing-in-T/ and /in-in-
ing-T/ for example) to show a significant decrease in probability
(essentially “resetting” back to the blue level instead of the red
level). This is not the case. To directly test the idea that there are
two things going on, prior /ing/ count and 1-back effect, I will
need to fit a model containing those two predictors explicitly.
The purpose of Model 1 here is in fact to argue that Model 1 is
not the correct model: that in treating every 3-prior sequence as
a unique context we are missing a generalization about how the
real differences across those sequences can be captured by a pair
of overlapping simpler predictors.

Model 2, accordingly, is congruent with that proposal: instead
of a single predictor with a different level for each prior token
sequence, I include two predictors, one for /ing/ count in the
prior sequence (the equivalent of the facets in Figure 3) and
one for the 1-back variant (the equivalent of the bar colors
in Figure 3). The prior /ing/ count is treated as a categorical
predictor here, again using reverse difference coding for the
contrasts. The results from this model are given in Table 2.
There is a significant effect such that if the 1-back variant is
/ing/, the target is more likely to be /ing/ (β = 0.68, p <

0.001). While the size of the coefficient is quite similar to the
comparisons in Model 1 that amounted to a test of a 1-back effect
while controlling prior /ing/ count (which were 0.78 and 0.61),
pooling over all of the prior /ing/ count values approximately
doubles the effect size (z). When we look at the prior /ing/
count predictor, we can see that the difference between 1 and 0
prior /ing/s is not significant but all other comparisons between
levels are. This is consistent with what we saw in Model 1 with
the lack of difference between the first two levels of the prior
sequence predictor.

Model 3 reflects a refinement of Model 2 but keeps the
basic premise of the model. The only difference between Model
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2 and Model 3 is that Model 3 treats prior /ing/ count as a
continuous numeric predictor instead of a categorical predictor.
In one sense this is not the correct thing to do: an integer
count value is a different sort of thing than a continuous
number, and the only options for prior /ing/ count values
are integers. However, what it reflects in this model is the
premise that what we’re trying to capture with the prior
/ing/ count predictor is something like “how /ing/-ful is the
speaker’s overall recent prior experience,” and we only have a
coarse-grained measure of what is underlyingly a continuous
measure. In theory we might want to look at something
like a weighted moving average over a larger window to get
a more truly continuous measure of “how /ing/-ful is the
speaker’s overall recent prior experience.” The reason I do not
undertake such an analysis is that the problem of interlocutor
interruptions makes it difficult to go very far back. In any
case, Table 3 presents the results of Model 3. It shows that
the 1-back estimate is stable but now the linear prior /ing/
count predictor has a larger effect size and much smaller p-
value than any of the corresponding prior /ing/ count values
in Model 2.

The three models I have fit here are not nested, and therefore
cannot appropriately be compared formally with log-likelihood
tests. However, various model criteria might support an informal
comparison of the models. Each model is simpler than the last
in terms of degrees of freedom (Model 1 d.f. = 14, Model 2 d.f.
= 11, Model 3 d.f. = 9). As a result, the log likelihood inevitably
goes up, but only slightly: the log likelihoods of the three models
are −1058.2, −1058.8, and −1059.4, respectively. Meanwhile,
the AIC and BIC measures, which penalize extra parameters, go
down from Model 1 (AIC = 2144.5, BIC = 2225.1) to Model 2
(AIC = 2139.5, BIC = 2202.8) and fromModel 2 to Model 3 (AIC
= 2136.8, BIC = 2188.6). These criteria are in line with the view
that Model 3 is the simplest and strongest model of the prior
sequence effects in this data.

Figure 5 shows a data visualization that is equivalent to the
observed data visualization in Figure 3 but instead represents
the predicted probabilities from Model 3 for a particular male
speaker (PNC PH06-2-2) whose mean /ing/ rate is near the
dataset grand mean, for a token that neither follows a coronal
nor precedes a pause and has a scaled log vowels per second of 0
and a scaled Lg10CD value of 0. This illustrates that this model
is producing predictions that are a good match for the empirical
patterns we saw in section 2.3—these patterns remain when we
control for speech rate, frequency, phonological context, speaker
gender, and speaker identity clustering.

3. PRIOR SEQUENCES IN SIMULATED
DATA

The empirical data in section 2.3 showed the same pattern at
three lengths of N-prior sequence: the probability of /ing/ at a
target is affected by both the total number of /ing/ instances in
the N-prior sequence and the variant used at the 1-back position
(that is, the token that would normally be treated as the prime),
without evidence to suggest that it is influenced by the order of

TABLE 2 | Model 2: Categorical prior /ing/ count and 1-back.

Estimate z-value Pr(>|z|)

Intercept −0.68 −3.62 <0.001

Control

Speech rate −0.22 −3.46 0.001

Lexical frequency −0.45 −7.35 <0.001

Preceding coronal 0.28 4.58 <0.001

Following pause 0.35 4.72 <0.001

Female speaker 0.49 2.99 0.003

Critical

1-back /ing/ 0.68 4.07 <0.001

Prior /ing/ count (1-0) 0.20 1.12 0.262

Prior /ing/ count (2-1) 0.38 2.15 0.032

Prior /ing/ count (3-2) 0.47 2.32 0.020

TABLE 3 | Model 3: Continuous prior /ing/ count and 1-back.

Estimate z-value Pr(>|z|)

Intercept −1.19 −6.38 <0.001

Control

Speech rate −0.22 −3.50 <0.001

Lexical frequency −0.45 −7.31 <0.001

Preceding coronal 0.28 4.60 <0.001

Following pause 0.35 4.69 <0.001

Female speaker 0.49 3.03 0.002

Critical

1-back /ing/ 0.67 4.06 <0.001

Prior /ing/ count 0.35 3.79 <0.001

prior observations at an N-back position of N greater than 1. The
statistical modeling in section 2.4 supported that interpretation
of the data while controlling for other known predictors of ING.
But what does this result actually tell us about the source of
persistence? In this section I aim to show that this type of analysis
can move us toward an answer on a problem that has seemed
intractable for some time.

In this section I use a series of simple Bernoulli process
simulations to explore the potential processes generating
different patterns of target probabilities based on prior token
sequences. It should be emphasized that this is a preliminary
tour through what I believe could become a fruitful area of
research more broadly. The use of computational simulations
in sociolinguistics is not new, but most simulations are
simulations of communities, such as agent-based models
of the spread of sound change through a population over
generations. The simulations I use here are focused on a
microtemporal level and are conceptually very simple: I
model the production of variation essentially as strings of
coin flips at different probabilities, then analyze the generated
data in the same way as I analyzed the corpus ING data.
I compare the output of different simulated models to
the corpus results from the previous section as a way of
investigating the plausibility of different processes having
generated the data. I particularly pay attention to the ways
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FIGURE 5 | Predicted values from Model 3 (male speaker PH06-2-2 with observed /ing/ probability = 0.4, non-pre-coronal, non-post-pausal, scaled log vowels

per second = 0, scaled Lg10CD = 0).

in which the predictions from models of baseline deflection
and models of sequential dependence are dissociated under
various conditions. This is of interest because it motivates
the study of multiple token sequences in contrast to the
usual persistence approach (looking at only one prior
token) that does not distinguish between baseline deflection
and sequential dependence. While I will not be able to
conduct an exhaustive search of the many-dimensional
parameter space opened up by these models, my preliminary
explorations here will suggest that a model combining
both a sequential dependence mechanism and a baseline
deflection mechanism produces patterns that most closely and
consistently resemble the results of the corpus data analysis
in section 2.3.

3.1. Simulation Preliminaries
For clarity of exposition with a sociolinguistic audience in mind,
I will discuss the models here as if they involved speakers
producing the ING variable: for instance, I will describe a
Bernoulli trial9 with an outcome of 1 as an instance of the /ing/
variant. I will also present visualizations of the model outputs
using this framing around ING, making the graphs directly
visually comparable to the graphs in section 2.3. It should, of
course, be borne in mind that everything happening in these
simulations is merely lists of probabilities and 0s and 1s; nothing
about them is specific to ING (or to sociolinguistic variation, or,
indeed, to linguistic behavior).

9A Bernoulli trial is simply a random variable with only two possible outcomes,

sometimes treated as “success” and “failure.” The probability of success and

probability of failure add up to 100%. A familiar example of a Bernoulli trial is

a coin flip.

Each simulation involves the same set of simulated “speakers,”
whose identity is tracked during each run of the simulation.
Each speaker has some baseline probability of producing the
/ing/ variant (vs. the /in/ variant). These baseline probabilities
are taken from the observed corpus data so that the overall
distribution of speakers and their linguistic behavior resembles
that of the real data. In the corpus 3-prior dataset, there are 118
speakers who each produce on average 34 observations. Of these,
17 speakers end up contributing only /ing/ or only /in/ outcomes
to the 3-prior data, but only because of exclusions: none of these
are speakers whose ING behavior is categorical in the larger data
set. However, in the interest of avoiding simulated speakers with
categorical baselines, I exclude these 17 speakers in order to end
up with 101 simulated speakers with non-categorical baselines.
The distribution of by-speaker baseline /ing/ probabilities is
shown in Figure 6. Each of the simulated speakers will produce
an ordered string of 20 “ING tokens” (Bernoulli trials) with the
speaker’s /ing/ probability as the outcome probability of each
trial. Since the first three trials from each speaker are excluded
from analysis because they do not have enough previous trials,
each speaker contributes 17 observations to the simulated data
set, resulting in a total of 1717 observations in each simulated
data set (compared to 2300 in the observed data at 3-prior depth).
I calculate the observed proportion of 0s and 1s conditioned on
each preceding trial sequence, then store these values. The entire
run is then repeated 500 times and the distribution of results from
those runs is presented graphically. I also fit a linear mixed effects
regression to each simulation run, with predictors equivalent to
the critical predictors fromModel 3 from the corpus data analysis
plus the speaker random effect (the control predictors in Model
3 are not relevant for the simulated data). I extract the 1-back
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FIGURE 6 | Observed by-speaker probabilities from corpus data, used for

simulated speaker baselines.

and prior /ing/ count predictor z-values (effect sizes) and p-values
from each run over the course of the 500 runs in order to find
out how often each simulation produces statistically significant
effects aligned with the corpus results.

The series of simulations that I will compare across the
following subsections is built up as follows. The first simulation,
in section 3.2, contains no microtemporal clustering: I call
this the null simulation. Each subsequent simulation has some
source of microtemporal clustering added in. In the sequential
dependence simulations in section 3.3, the built-in clustering
mechanism that is added to the null simulation is that the
outcome of each trial affects the outcome probability for the
next trial. In the baseline deflection simulations in section 3.4,
a different built-in clustering mechanism is added to the null
simulation: each speaker has two or more states with distinct
target probabilities that are above and below the speaker’s
characteristic probability. These create the possibility of baseline
deflection as the speaker moves between different states and thus
different target probabilities; a Markov chain model generates
the sequences of states that the speakers move through. Finally,
in section 3.5, both of these distinct clustering mechanisms are
included in the simulation at the same time. In all simulations, the
data is generated by sampling the binomial distribution randomly
at each trial (at the specified probabilities) using the binom
package in R.

3.2. The “Null” Simulation: No
Microtemporal Clustering
The first thing I do is show what the N-prior sequence effects
look like in data that has speaker clustering (speakers differ
in their characteristic rates) but no form of microtemporal
clustering (that is, neither sequential dependence nor baseline
deflection, with no intraspeaker probability fluctuation). I call
this the “null” simulation because of the lack of critical clustering
structure. This simulation is important because it would be
easy to mistake speaker clustering for within-speaker temporal
structure. This will also be a starting point for the creation of
various microtemporally structured probability patterns that I
will use in the subsequent simulations.

The speaker baselines in the null simulation are as just
discussed in section 3.1 and shown in Figure 6. The results of

the null simulation are shown in Figure 7. What is immediately
apparent is that the effect of the prior /ing/ count seen in section
2.3 arises from speaker clustering without any within-speaker
microtemporal structure. This makes sense: without controlling
for speaker clustering, a target preceded by three /ing/ outcomes
is more likely to be a target from a high-/ing/ speaker and
therefore more likely to itself have an /ing/ outcome. While there
would be an apparent 1-back effect if we looked only at the 1-
back prior token depth (the red boxes are on average higher than
the blue boxes), we do not see any 1-back effect beyond that
generated by the prior /ing/ count, which is also as expected. The
regression results from the simulations confirm that the 1-back
effect is not present (a significant positive effect on 1.8% of trials
and a significant negative effect on 2.8% of trials).

In theory, including random speaker intercepts in a linear
mixed effects model of each simulation’s data should eliminate
the visually-apparent /ing/ count effect. The statistical model
values show that actually the models end up somewhat anti-
conservative: there is a significant positive effect of prior /ing/
count on 11.4% of runs. Because the structure of the model
does not include any possible true microtemporal source of this
effect, we can be confident that these findings actually arise from
incompletely controlled speaker clustering 10. This should be
kept in mind when interpreting the other models; I will compare
the observed number of significant prior /ing/ count effects to
this rate 11.

3.3. Simulating Sequential Dependence
I now build on the null simulation by adding the first candidate
source of within-speaker microtemporal structure: sequential
dependence. This simulation is identical to the previous one
except that, within each speaker, the outcome probability of
each Bernoulli trial is slightly influenced by the outcome of the
previous trial. I set the probability adjustment to 0.05: if the prior
outcome was a 1, I add 0.05 (out of 1) to the target probability,
and if the prior outcome was a 0, I subtract 0.05 from the target
probability. The probability adjustment is always done to the
speaker’s base probability, so the probabilities don’t snowball and
go out of bounds. Notice that this is equivalent to each speaker
having two states with different /ing/ probabilities, with the state
they are in on each trial determined by the ING outcome of the
previous trial. Any number of more sophisticated adjustments to
the baseline could be used to generate the exact /ing/ probabilities
for these states; the ± 0.05 adjustment is simple and transparent
but is not intended to involve any substantive claim about how
these probabilities are or should be adjusted.

The results we see in Figure 8 bear a resemblance to the
observed data in Figure 3. We see what looks like the prior
/ing/ count effect, although the null simulation made it clear
that this can derive from speaker-level clustering. We also see

10A “true” null simulation would be one that simply contains 1717 Bernoulli trials

at a single probability, which should produce a spurious prior /ing/ count effect

only 5% of the time.
11Of course, the empirical data should also be reassessed in light of this finding,

but because the prior /ing/ count p-value fromModel 3 is very low, I will continue

with the assumption that this effect is unlikely to be due to chance even with the

elevated probability of a spurious result.
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FIGURE 7 | Simulation with speaker baseline differences but no built-in microtemporal clustering.

FIGURE 8 | Results of 500 runs of a sequential dependence simulation with a 0.05 boost.

an effect where the red boxes are higher than the blue boxes
within each facet: the only-1-back effect. This model produces
a significant positive 1-back effect on 73.4% of runs, but a
significant positive prior /ing/ count effect only 8.6% of the
time—the latter being slightly lower than the false positive rate
in the null simulation. In other words, all of the apparent
/ing/ count effect here is attributable to the speaker rather than
temporal clustering. Interestingly, there is also a small difference

between the /ing-in-in-T/ and /in-ing-in-T/ conditions in the
1/3 ing facet, and between the /ing-in-ing-T/ and /in-ing-ing-T/
conditions in the 2/3 ing facet. These differences result from
small biases in which types of speakers produce which prior
token sequences 12. Consider the 2/3 /ing/ sequences. If a
speaker has a low /ing/ baseline probability, they are slightly

12Thanks to Dan Lassiter for identifying the source of these differences.
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more likely to produce an /ing/ after another /ing/ (as in /in-
ing-ing-T/ due to the facilitating effect of the first /ing/) but
less likely to spontaneously produce /ing/ twice apart from
that facilitating influence, as in /ing-in-ing-T/. In contrast,
it is somewhat “easier” for a high-/ing/ speaker to produce
the two /ing/s spontaneously. As a result, /ing-in-ing-T/ prior
sequences are slightly more likely to come from high-/ing/
speakers, and subsequently slightly more likely to result in
an /ing/ outcome.

3.4. Simulating Baseline Deflection
In the next set of simulations, I investigate baseline deflection
instead of sequential dependence. I remove from the simulations
the mechanism of adjusting the target probability based on
the prior outcome. Instead, I give each speaker two target
probabilities that average to the same characteristic probability as
they had in the previous simulations, when possible. Specifically,
I add and subtract 0.3 from the baseline, so for example a
speaker with an overall baseline of 0.4 will have a state A /ing/
probability of 0.1 and a State B /ing/ probability of 0.7. When this
calculation would put the probabilities outside of the 0 to 1 range,
I replace the value with 0 or 1 accordingly—so, speakers can have
a categorical behavior in one of their two states. The speaker then
switches back and forth between states A and B over stretches
of trials.

The state-switching behavior in the simulation is generated
stochastically using a Markov process: each state has a transition
probability reflecting the likelihood that the process will switch
to the other state for the next trial, but there is no further
time dependence. I use symmetrical transition probabilities
throughout the simulations I present here (so the probability
of switching from A to B is the same as the probability of
switching fromB toA) but will present several different transition
probabilities reflecting different degrees of state “stickiness.” The
use of the Markov process to generate the state switches is not
intended as a claim that this kind of state switching is actually
generated stochastically. On the contrary: I expect that changes in
state would reflect responses to changes in the real world context
where the speech is taking place, such as changes in topic, context,
or interlocutor, or changes in the speaker’s internal state, such
as shifts in stance, attitude, or attention. From the perspective of
the analyst, however, such contextual changes are unpredictable
and therefore can be modeled as a stochastic process 13. Once the
sequence of states has been determined, there is a Bernoulli trial
with the probability of success equal to the output probability
at each trial’s predetermined state, which produces the /ing/ or
/in/ variant as in the previous simulations. The idea is to produce
a model capturing the intuition that when two trials are closer
together they aremore likely to be in the same state, and therefore
more likely to have the same outcome. The most important
property of the model is simply that the state sequences are
generated independent of the outcomes at each trial.

This approach to the simulation of baseline deflection offers
different parameters that could be adjusted to generate a very
wide range of possible outcomes. Here I present versions of the

13Thanks to Kory Johnson for this suggestion and for proposing the use of Markov

processes for this purpose.

simulation at four different between-state transition probabilities.
I do not change any other parameters: I hold the number of states
(two) and the size of the difference between them for each speaker
constant and do not allow for one state to be stickier than the
other or for the stickiness of states to change over time.

When the transition probability is low, so the states are quite
sticky, the result is a pattern that reflects the continuous effect of
a prior token sequence such that the more prior /ing/s there are,
and the closer in the sequence they are to the target, the higher
the observed /ing/ rate in the target will be. This is shown in
Figure 9 for a model where the transition probability out of both
states is 10%. I call this a continuous-N-back effect, in contrast
to an only-1-back effect. In the regression models extracted over
the runs of the simulation, this simulation produces a significant
positive /ing/ count effect on 99.8% of runs, and a significant
positive 1-back effect on 71% of runs. This seems promising, but
recall that the model is not actually set up to detect a difference
between a continuous-N-back effect and an only-1-back effect;
visual inspection of the output in Figure 9 suggests that this is
a somewhat different pattern than what we see in the corpus
data. In a model where the transition probability is 50% for both
states, so speakers are equally likely to stay in their current state
or switch to the other state, then both the 1-back and prior /ing/
count effects are lost: there is a significant positive /ing/ count
effect on 10.8% of runs, again comparable to the null rate, and a
significant positive 1-back effect on 1.4% of runs. The output of
the model is not shown here but is visually identical to that of the
null model.

It is also possible to get a result that looks like the 1-back
result from the sequential dependence model. This arises when
the transition probability for both states is just shy of 50%, so a
speaker is a little more likely to stay in their current state than
not: Figure 10 shows the results when the transition probability
is 40%. This model produces a significant positive 1-back effect
on 36.6% of runs, which is not trivial but also not as good as the
sequential dependence model where 73.4% of runs produce a 1-
back effect. Like the sequential dependence model, though, this
simulation mostly loses the significant prior /ing/ count effect,
producing a significant positive /ing/ count effect on only 17.8%
of runs, not a very big improvement over the 11.4% positive
results in the null simulation.

Interestingly, these simulations are also able to reverse
the direction of at least the 1-back pattern. Figure 11 shows
that as soon as the transition probability in each state is
over 50%, the direction of the 1-back effect reverses, so that
at each value of the prior token count, the contexts where
the prior /ing/s were further away have the higher /ing/
probability, which is not as we would generally expect given
the usual persistence pattern. The statistical models confirm
this reversal: on 67.6% of runs of this simulation there is
a significant negative 1-back effect. This reversal reflects the
fact that when the transition probability is over 50%, two
sequentially adjacent tokens are actually less likely to occur
in the same state, rather than more likely, because from
token to token the state is more likely to switch than to
stay the same. This highlights that the argument in favor of
baseline deflection as a source of repetitiveness does contain
some assumptions about the time course of baseline deflection,
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FIGURE 9 | Results of 500 runs of a baseline deflection model with between-state transition probability of 0.1.

FIGURE 10 | Results of 500 runs of a baseline deflection model with between-state transition probability of 0.4.

namely that the window over which the baseline might
shift is sufficiently wide that in fact two tokens occurring
sequentially are more likely to be produced in the same
window than not. It is also worth noting that there is an
attested pattern of anti-persistence in the literature, which
Szmrecsanyi (2006) terms the horror aequi effect. This particular
simulation gives us one way of understanding how such an effect
could arise.

3.5. Combining Sequential Dependence
and Baseline Deflection
Both of the simulation types discussed so far have drawbacks
in terms of the likelihood that their microtemporal clustering
model might have produced the corpus ING data discussed in
section 2.3. The sequential dependence model nicely produces an
only-1-back effect reminiscent of the distinct pattern seen in the
corpus data, but produces a prior /ing/ count effect only at chance

Frontiers in Artificial Intelligence | www.frontiersin.org 13 June 2019 | Volume 2 | Article 10

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Tamminga Microtemporal Clustering in Sociolinguistic Sequences

FIGURE 11 | Results of 500 runs of a baseline deflection model with between-state transition probability of 0.6.

rates. The baseline deflection models can clearly produce a wide
range of patterns. But in the case where a baseline deflection
model does consistently give rise to the desired prior /ing/
count effect (the version with the lowest transition probability),
it also produces a continuous-1-back pattern rather than an
only-1-back pattern.

There are two model classes under consideration here,
and two empirical effects we desire to produce with the
models. It seems that each model is better suited to producing
one of the empirical effects: most versions of the baseline
deflection models produce an /ing/ count effect, and the
sequential dependence model produces an only-1-back effect.
An appealing next step, then, is to combine the models
to create a simulation that has both sequential dependence
and baseline deflection built in. In this simulation, the state-
shifting behavior is first generated using a Markov process
as in the baseline deflection models; then the coin-flipping
procedure takes place with the sequential dependence boosting
behavior built in. The results of a set of simulations of this
type with transition probability of 0.1 (as in the baseline
deflection model of Figure 9) and a boost of 0.05 (as in
the sequential dependence model of Figure 8) are shown
in Figure 12.

This set of simulations now has several desirable features. The
basic pattern of results shown in the graphmore closely resembles
an only-1-back effect than a continuous-1-back effect, making
it an improvement over the component baseline deflection
model alone; this is achieved through the inclusion of the
sequential dependence boost. In terms of the model fit, we get
a significant /ing/ count term on 99.2% of runs and a significant
1-back term on 99.6% of runs. By combining these two sources
of microtemporal clustering into a single model—in a way

that is consistent with the existence of multiple independently
motivated phenomena that we expect to shape linguistic behavior
in speech—we are able to more consistently arrive at an outcome
that resembles the corpus data.

4. DISCUSSION

The sizable corpus sociolinguistic literature on persistence has
typically asked how a single prior instance of a variable affects
the outcome in a target instance of the same variable. In the
first part of this paper, I extended this view of persistence to
ask what effect sequences of multiple prior tokens have on the
outcome of a target token. The descriptive results in section
2.3 indicate that this analysis of sociolinguistic sequences can
reveal additional microtemporal structure that is not visible when
we look only at a single prior token. More specifically, there
are two aspects of the corpus ING results that are of interest
and would not be detectable with the 1-back information only.
First, there is a cumulative effect of how many /ing/ tokens
occur in the prior token sequence, regardless of their position.
This effect goes beyond the clustering we expect merely from
differing speaker baselines. Second, there is a distinct effect of
what variant occurred in the 1-back position. If we look only
at the previous token, we would not be able to see either effect:
we could not tell the difference between 1/3 and 2/3 of the prior
tokens being /ing/ if we had only one token, nor would we be able
to tell that the order of previous tokens is irrelevant beyond the
1-back position.

In the second part of the paper, I have suggested that this
enriched view of the microtemporal structure of sociolinguistic
repetitiveness can bring new evidence to a longstanding debate
about the nature of that repetitiveness. The observation of
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FIGURE 12 | Model with both baseline deflection (transition probability = 0.1) and sequential dependence (boost = 0.05).

persistence in corpus data has often been interpreted as
reflecting sequential dependence, where the outcome of a
prior instance of the variable directly influences the target
outcome. On the other hand, it is often objected that persistence
might arise as a result of baseline deflection, where sequential
tokens are more likely to occur under similar contextual
circumstances and therefore more likely to have the same
outcome. To clarify what these two types of microtemporal
clustering predict, I built a number of simulations in which
sociolinguistic variation between /ing/ and /in/ is modeled
using Bernoulli processes. In these simulations, sequential
dependence is modeled by allowing the outcome of one
Bernoulli trial to adjust the outcome probability on the next
Bernoulli trial, while baseline deflection is modeled by creating
pre-established sequences of states with different outcome
probabilities but then not making reference to the actual
outcomes across trials.

The sequential dependence model produces one of the two
central effects of interest in the empirical data, the only-1-
back pattern (seen in Figure 8). From a mechanical point of
view, this can be understood straightforwardly: the sequential
dependence models were built such that the target trial is only
given information about the outcome of the immediately prior
trial, not of previous trials. Of course, nothing would prevent
us from building a sequential dependence model that adjusts
the target trial probability based on the outcome information
from several previous trials. The corpus result, then, is not
trivial; the usefulness of a sequential dependence model that only
tracks a single prior token suggests that it may be worthwhile
to investigate comparable real-world processes that operate over
long distances in terms of time yet a limited window in terms
of prior instances of the linguistic variable. A downside of the

sequential dependence model is that it does not reliably produce
the /ing/ count effect. It is possible to build a baseline deflection
model that mimics the output of this sequential dependence
model (as in Figure 10), but such a model ends up with the same
drawback as the sequential dependence model in that it also does
not reliably produce the /ing/ count effect. On the other hand,
a baseline deflection model with a relatively low between-states
transition probability of 0.1 has the advantage of almost always
producing a significant /ing/ count effect as desired. However,
it does not produce the same kind of separation between 1-
back (and only 1-back) conditions as the corpus data exhibits.
Instead, it produces a continuous effect of recent /ing/ tokens:
the more /ing/s and the closer those /ings/ in the prior token
sequence, the greater the likelihood of /ing/ in the target (as seen
in Figure 9). While we might have expected such a continuous-
N-back effect on intuitive grounds, it does not actually accord
with the pattern seen in the corpus data. In section 3.5, I
showed that combining the sequential dependence and baseline
deflection clustering mechanisms into a single model produces
a surface pattern that is a near match for the corpus data, as
well as nearly-always significant critical main effects from the
regression models.

That the combined simulation seems to most successfully
match the corpus data is an appealing result because we have
independent evidence for the real-world phenomena that might
produce both types of microtemporal clustering. As I discussed in
section 1.1, there are multiple candidate phenomena that might
give rise to each of the two types of microtemporal clustering
under consideration here. Priming is the most commonly
appealed-to phenomenon generating sequential dependence, but
other sources of true sequential dependence are possible. Style
shifting, broadly construed, is the most frequently suggested
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phenomenon that could give rise to co-occurrence through
baseline deflection. To reiterate the point in section 1.1, nothing
in this paper should be taken as evidence for or against particular
mappings of clustering types to real-world interpretations.
However, the fact that phenomena that could produce both
clustering types unquestionably exist means that a model in
which multiple phenomena are at play is an entirely plausible
one. For example, were we to think that baseline deflection arises
from contextual style-shifting while sequential dependence arises
from priming of a recently-used linguistic option, we might
find it entirely unsurprising that speakers are both style-shifting
and exhibiting priming at the same time: there is plenty of
evidence for the existence of both style-shifting and priming
in human linguistic behavior. Indeed, to conclude that one of
those phenomena was not at play might be even more surprising.
The same logic applies to other possible interpretations of
the sources of microtemporal clustering; the current study
has nothing to say about where sequential dependence and
baseline deflection come from, although conceivably some
outgrowth of this approach could be used to probe for more
precise quantitative properties of priming and style-shifting in
future work.

Of course, the analyses and results of this paper are
far from conclusive; they are best treated as a promising
methodological demonstration inviting further research. One
possibility that should be kept in mind is that the particular
properties of the corpus results themselves could have occurred
by chance. I have explored the simulations with a view to
identifying a model that could plausibly have generated the
corpus results as observed. But given the role of chance as
well as possible uncontrolled factors in conversational speech
data, one possibility is that the corpus results themselves
are a chance output of a model like one of the models I
have deemed less successful. Even if the pattern of results
seen here is not due to chance, it might still be true that
the pattern reflects something specific about the particular
conversational interactions in the PNC data, or something
unique to Philadelphia English, or something about the ING
variable itself. We should be cautious to not reify or over-
interpret the “prior /ing/ count” and “only-1-back” effects as I
have described them here. The basic persistence effect has been
found repeatedly across many different studies and therefore
is seen as demanding a relatively general explanation; no deep
investment in general explanations of these longer sequence
effects should be made unless they can also be established as
more generally recurring properties of sociolinguistic sequences.
The most important step toward building confidence in this
pattern of results will be to repeat the analysis on other ING
data sets, other English variables besides ING, and ideally other
languages entirely.

There are also many possible analyses that this paper has
not undertaken. My preliminary explorations of the simulations
have barely broached the many-dimensional parameter space
afforded even by the simple models used here. Furthermore,

the models could be enriched in many ways. While it would
probably not be useful to simulate all of the possible details
of ING variation simultaneously, one particular factor that
has not played a role in any of the analyses thus far is
the amount of time that elapses between each token. In
previous work I have shown that the decay of ING persistence
is very slow (Tamminga, 2014), which suggests that decay
is unlikely to play a major modulating role in the effects
we see when we abstract away from the exact duration of
the time between a prior token and a target. An additional
practical consideration in omitting temporal lag as a factor in
the corpus analysis is that it is not, at first glance, obvious
how best to combine the different prior token sequences
with all of the possible decay relationships between them.
However, future work might explore ways of integrating
a continuous time dimension into the analysis of prior
token sequences.

The goal of this paper was to show that there is value in
the study of sociolinguistic sequences and the microtemporal
structure they reveal. Sequential dependence and baseline
deflection seemed inextricably intertwined in the 1-prior view,
and indeed every single simulation in section 3 produces an
overall difference between 1-prior conditions that would be
counted as a finding of persistence under traditional quantitative
approaches to persistence. Through the simulations, though, we
learned that a longer time window can give us a more nuanced
picture of what speaker repetitiveness looks like, with baseline
deflection and sequential dependence producing outcomes that
can be seen to be different when we look at longer prior
sequences. We have already made much progress through
the study of persistence at the 1-prior depth; as Szmrecsanyi
concludes, “persistence is actually sufficiently patterned and
predictable to help us understand better the linguistic choices
that speakers make” (Szmrecsanyi, 2006, p. 6). The combined
corpus analysis and simulations here suggest that this sentiment
is as true of longer sequences as it is of prime–target pairs.
The potential in modeling longer sequences can be seen from
this study regardless of whether the particular analyses offered
here are correct. We have not yet reached the limits of what
we can learn using persistence, 1-back or N-back, as a tool for
the investigation of sociolinguistic variation. By investigating
quantitative patterns at the microtemporal level, we can learn
more about what factors are at play in the production of
sociolinguistic variation.
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